

Séance plénière

Commission Locale de l'Eau

8 octobre 2024

ORDRE DU JOUR

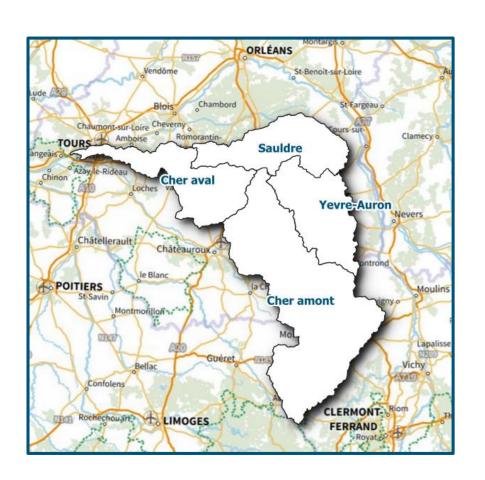
- I. HMUC Cher : état d'avancement de la démarche
- II. HMUC Cher : présentation des résultats du volet climat
- III. Etat d'avancement du modèle CAYAC et perspectives d'exploitation
- IV. Informations diverses

Pourquoi?

Connaître, délimiter les zones et périodes avec des risques de manque d'eau

Comprendre les causes de ces situations

Stratégie et outils :


- Sécuriser les usages
- Sécuriser les conditions de vie des espèces aquatiques
 - Aujourd'hui et demain

Anticiper les effets du changement climatique

- Bassin versant de la rivière Cher
 - 4 CLE
- 3 régions, 7 départements, 14 000km²
 - Exclusion du Fouzon

Qui?

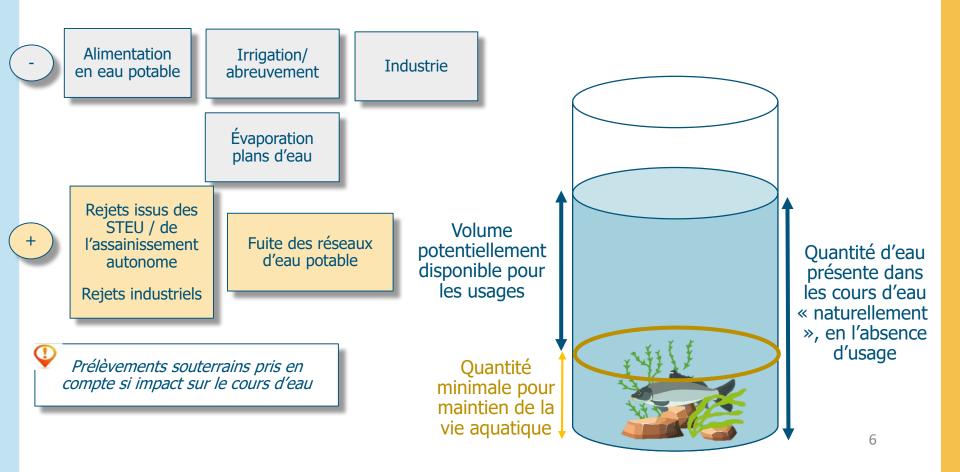
Prise de décision et validation finale

Discussion et validation technique

Réalisation technique

Chacune des 4 CLE Comités techniques thématiques

Établissement public Loire + syndicat Sauldre + entreprises prestataires


- Méthode « HMUC »
- Préconisée par le secrétariat technique de bassin

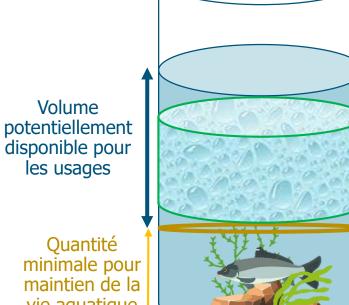
Comment?

Pour chaque **secteur**, pour chaque **période** :

Comment?

Pour chaque **secteur**, pour chaque **période** :

Volume effectivement prélevé


Volume potentiellement disponible pour les usages

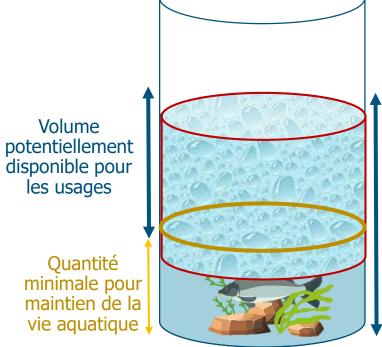
Volume effectivement prélevé

Volume potentiellement disponible pour les usages

Les usages peuvent être maintenus à leur niveau actuel, voire augmentés.

Ouantité d'eau présente dans les cours d'eau « naturellement », en l'absence d'usage

vie aquatique

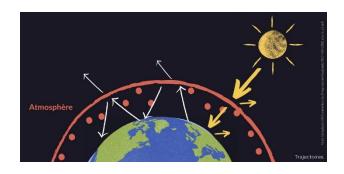

Comment?

Pour chaque **secteur**, pour chaque **période** :

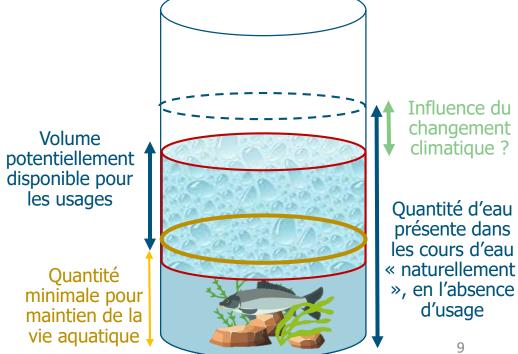
Volume effectivement prélevé Volume potentiellement disponible pour les usages

Les usages doivent être limités.

Quantité d'eau présente dans les cours d'eau « naturellement », en l'absence d'usage



Comment?


Pour chaque **secteur**, pour chaque **période** :

☐ Baisse des débits des cours d'eau jusqu'à — 50%

 → 1,1 °C augmentation température moyenne mondiale depuis l'ère pré-industrielle

6e rapport du GIEC

Intérêt de la méthodologie

- Vision à grande échelle, et à une échelle cohérente pour la ressource en eau (bassin versant)
- Apporter des informations pour la prise de décision

Points de vigilance

- Incertitudes : estimation de la quantité d'eau présente, du débit minimum nécessaire pour les espèces, quantification des usages...
 - → Outil d'aide à la décision

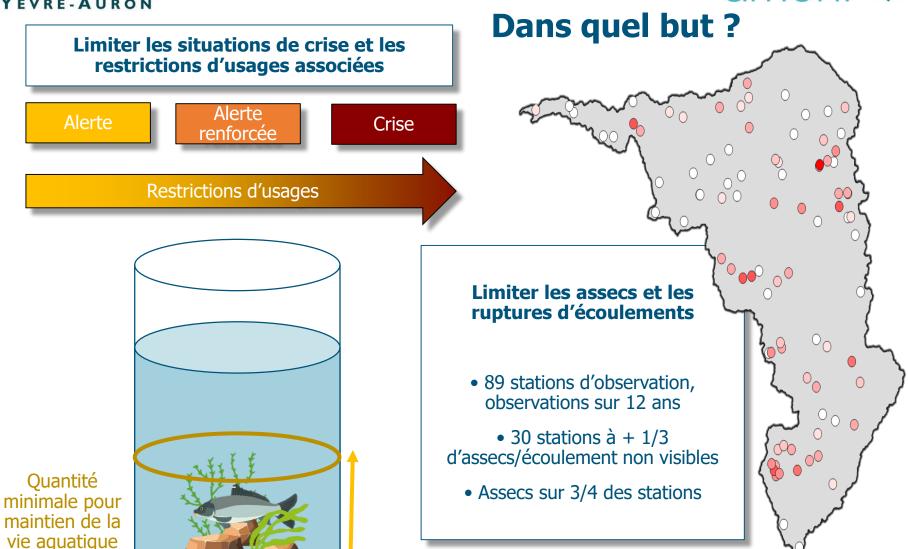
Pour quels résultats ?

Stratégie et outils :

- Sécuriser les usages
- Sécuriser les conditions de vie des espèces aquatiques
 - Aujourd'hui et demain

Une **stratégie** :

- des zones + périodes + usages où agir prioritairement
- des préconisations d'actions à destination des partenaires (syndicats de rivière, gestionnaires AEP, chambres d'agriculture...)


Un **outil réglementaire** : des **volumes prélevables** adaptés, répartis entre les grandes catégories d'usages

→ inscription SAGE + arrêté préfectoral

12

Volet Hydrologie

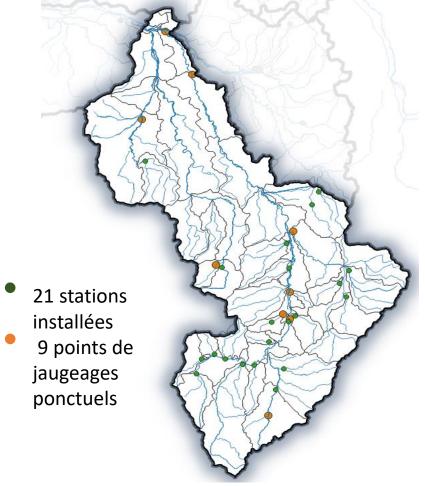
Acquérir de la connaissance complémentaire sur le fonctionnement des cours d'eau et des nappes à l'échelle du bassin du Cher

Acquisition de données complémentaires pour les eaux de surface

- ☐ Prestataire OTT Hydromet
- Montant : 189.570 €
- Démarrage février 2023
- Durée 18 mois

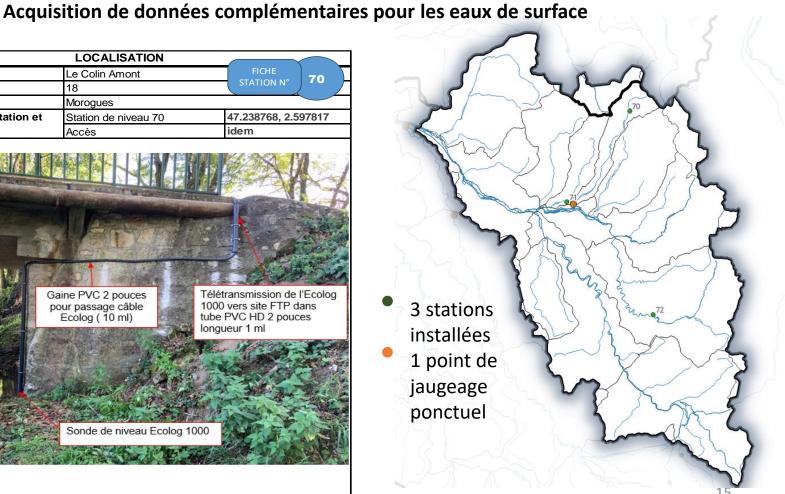
Acquisition de données complémentaires pour les eaux souterraines

- Prestataire CPGF Horizon et Suez
- **□** *Montant* : 59.434 €
- ☐ Démarrage septembre 2023
- ☐ Durée 16 mois



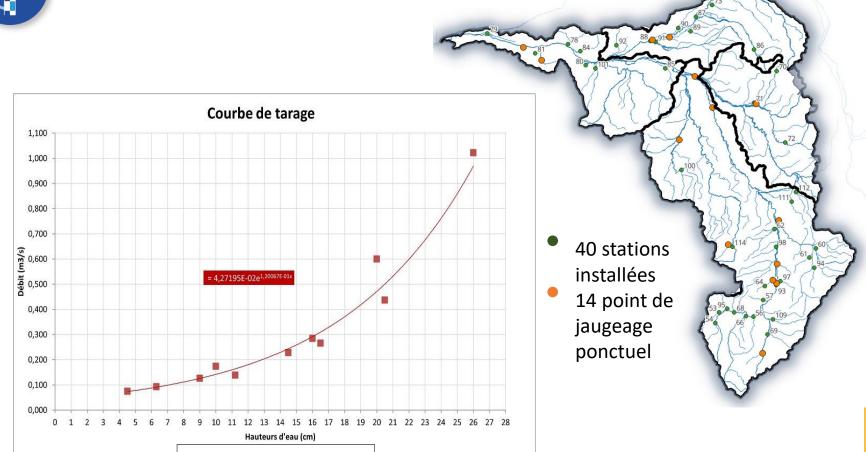
Acquisition de données complémentaires pour les eaux de surface

	LOCALISATION	
Cours d'eau	l'Arnon	FICHE STATION N° 11
Département	3	STATION IN
Commune	Saint Eloy d'Allier	
Coordonnées GPS station et	Station de niveau n°114	46.489998, 2.326497
accès	Accès	46.489998, 2.326497
Télétransmission de l'Ecolog 1000 vers site FTP dans tube PVC HD 2 pouces longueur 3 ml	og 1000	
F	PRESENTATION DES TRAVAUX	
Fourniture et pose de la sonde de		
Système de transmission de l'Eco	log 1000, fixé sur l'arbre mort, e	n rive droite
		onnées via Hydras3



LOCALISATION		
Le Colin Amont	FICHE	
18	STATION N° / 70	

_e Colin Amont	FICHE	70
18	STATION N°	П
Morogues		
Station de niveau 70	47.238768, 2.59	7817
Accès	idem	
r passage câble colog (10 ml) 1000 tube F	vers site FTP da PVC HD 2 pouce	ans [
Sonde de niveau Ecolog 1000		
	8 Norogues Station de niveau 70 Accès PVC 2 pouces passage câble colog (10 ml) Télétr 1000 tube F longu	Ar.238768, 2.59 Accès Télétransmission de l' 1000 vers site FTP da tube PVC HD 2 pouces longueur 1 mil

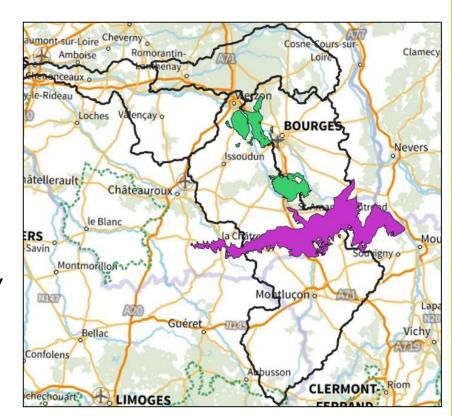

Acquisition de données complémentaires pour les eaux de surface

—— Expon. (Jaugeages)

Volet Hydrologie

Acquisition de données complémentaires pour les eaux souterraines

- □ Calcaires tertiaires lacustre du Berry
- □ Grès et arkoses du Trias du Berry libres


Préparation de la campagne

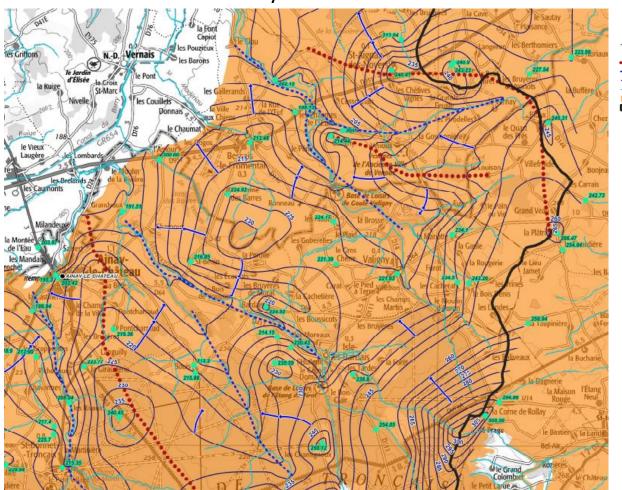
- Étude bibliographique : description des aquifères, connaissance des piézomètres
- Atlas de terrain

Campagnes de terrain

 Mesures piézométriques (ouvrages existants : puits, forages, piézomètres)

mars/avril et septembre/octobre 2024

Esquisses piézométriques :


Le sens de l'écoulement - Axes de drainage - Lignes de crêtes / noms des cours d'eau et communes

Esquisse piézométrique : aquifère des grès et arkoses du Trias du Berry libre

Légende Isopièzes 5m (en mGF) Mesures piézométriques (mNGF) Lignes de crêtes piézométriques Axe de drainage de la nappe Direction de l'écoulement souterrain Hydrographie - BD Topage - Métropole - 2024 Masse d'eau FRGG070 Grès et arkoses du Trias du Berry Libres Bassin versant du Cher

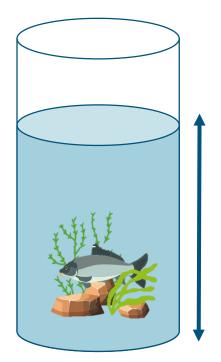
Fond SCAN 100 IGN

Interprétation Esquisse piézométrique : aquifère des grès et arkoses du Trias du Berry libre

Volet Hydrologie

Niveaux de nappe les plus hauts sont situés à l'amont des bassins versants : cotes piézométriques situées autour de 296 mNGF au Sud-Ouest et jusqu'à 350 mNGF au Sud-Est. Les plus bas sont situés dans la vallée du Cher au Nord de la masse d'eau souterraine à la côte 145 mNGF.

Les cours d'eau drainent la nappe sur l'ensemble du bassin versant selon l'interprétation

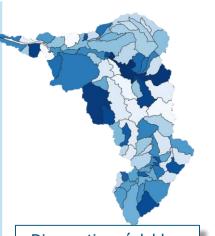

Aquifère pouvant localement fonctionner comme un aquifère multicouche: Les zones situées en rive droite du Cher, au niveau de la forêt de Tronçais, présentent des niveaux de nappe qui sont bien supérieurs à la vallée du Cher et de l'Aumance qui traverse Meaulne, probablement en raison de niveaux perchés de la première nappe

Les gradients hydrauliques sont globalement plus élevés en limite amont, ainsi qu'en rive gauche de l'Arnon, en rive droite du Cher, avec des valeurs pouvant atteindre 5 %, sur les flancs de la vallée de l'Aumance, enlimite d'affleurement des grès et arkoses du Tris du Berry libre.

Volet Hydrologie

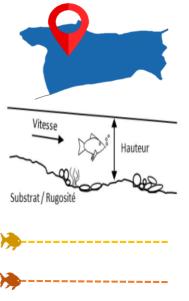
Quantité d'eau présente dans les cours d'eau

- Compléter la connaissance manquante
- ✓ mesures de débit sur les cours d'eau avec peu d'information
- ✓ analyse du fonctionnement des nappes, sur les zones avec peu d'information
 - 2025 : élaboration d'un **modèle** afin de simuler l'évolution du débit sur chaque bassin


Volet Milieux

- Dans le cadre de l'analyse HMUC Cher, il est prévu de s'appuyer sur une prestation pour le volet « milieux »
- Consultation marché public en mars 2024 → infructueuse → marché trop volumineux (cout et presta/durée)
- Difficultés à trouver les financements à hauteur du besoin
- Retravailler le cahier des charges en vue de la relance du marché

Volet Milieux


Diagnostic préalable : définition de secteurs prioritaire

Pour chaque secteur :
détermination d'une station
sur la base du diagnostic
(=tronçon de cours d'eau
représentatif et idéal pour la
détermination de débits
biologiques)

Pour chaque station :
détermination d'une
méthode de détermination
des débits biologiques
(habitats, hydrologique,
hydraulique)

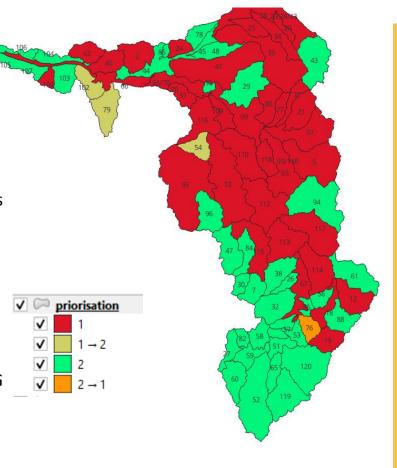
Pour chaque station : application de la méthode = terrain + définition de débits biologiques

Deux réunions de travail de réflexion sur la démarche et la méthodologie

> 18/03/2024 et 16/04/2024 : fédérations de pêche, OFB, DREAL, Agence

Trois réunions « locales » de réflexion afin de retravailler le cahier des charges, notamment la sectorisation et la priorisation

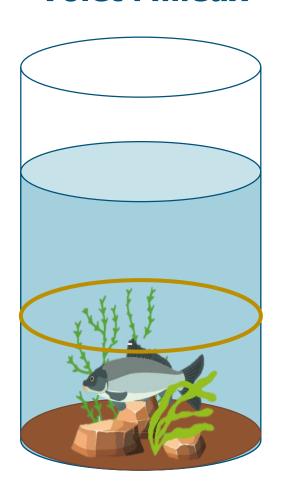
- > 03/06/24 = Indre-et-Loire + Loir-et-Cher
- \rightarrow 04/06/24 = Cher + Indre
- \geq 25/06/24 = Creuse + Allier + Puy-de-Dôme



Volet Milieux

PRIORISATION - FUSION en fonction des secteurs et enjeux sur le territoire

Critères retenus lors de ces réunions :


- Stations hydrologiques disponibles (Hydro portail et celles installées pour HMUC Cher)
- Les prélèvements Agricoles
- Les prélèvements des plans d'eau
- Les prélèvements AEP
- Les espèces repères
- Les réservoirs biologiques
- La différence de rang de Strahler entre le cours d'eau de l'UG et celui du CE dans lequel il conflue
- Les secteurs en ZRE/non ZRE
- Les stations ONDE
- Hydro morphologie des cours d'eau

Volet Milieux

☐ En cours:

- ➤ diagnostic, Choix des stations
- optimisation du cahier des charges, lancement prestation
- 2025 : choix entreprise prestataire + mesures de terrain

Difficultés à garantir le financement adéquat

Quantité minimale pour maintien de la vie aquatique

Volet Usages

Alimentation en eau potable

Irrigation/ abreuvement

Industrie

Évaporation plans d'eau

Rejets des STEU et de l'assainissement autonome

Rejets Industriels

Fuite des réseaux d'eau potable

• Réalisé :

- Collecte des données sollicitation des partenaires
- Conventions des données
 - Agence d'eau
 - ➤ DDT 37
 - Chambre d'Agriculture et OUGC (en cours)
- information des entreprises + syndicats AEP concernés
- ler échange technique : méthodologie et traitement des données « irrigation »
 - En cours : bancarisation et analyse des données
- A venir (décembre 2024) : comité technique de présentation des résultats : AEP – Industrie – Rejets

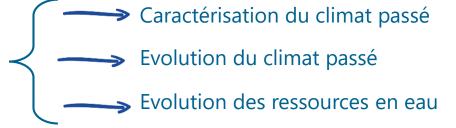
Commission Inter SAGE Cher Amont / Yèvre-Auron

Synthèse des résultats du volet Climat de l'étude HMUC Cher sur les périmètres des SAGE Cher Amont et Yèvre-Auron

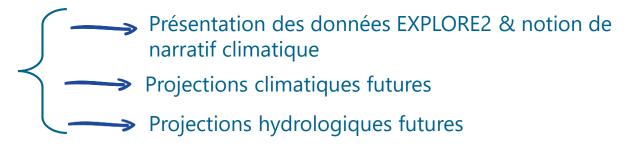
Antea Group

Understanding today. Improving tomorrow.

Financé par



Ordre du jour


Phase 1:

Analyse rétrospective du climat

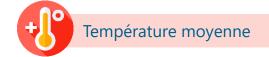
Phase 2:

Analyse prospective du climat

Validation des résultats

Analyse <u>rétrospective</u> de l'évolution du climat et impact sur la ressource en eau

- Caractérisation du climat passé
- Évolution du climat sur les 30 dernières années
- Évolution des ressources en eau (régimes hydrologiques & piézométriques)



☐ Méthodologie en bref

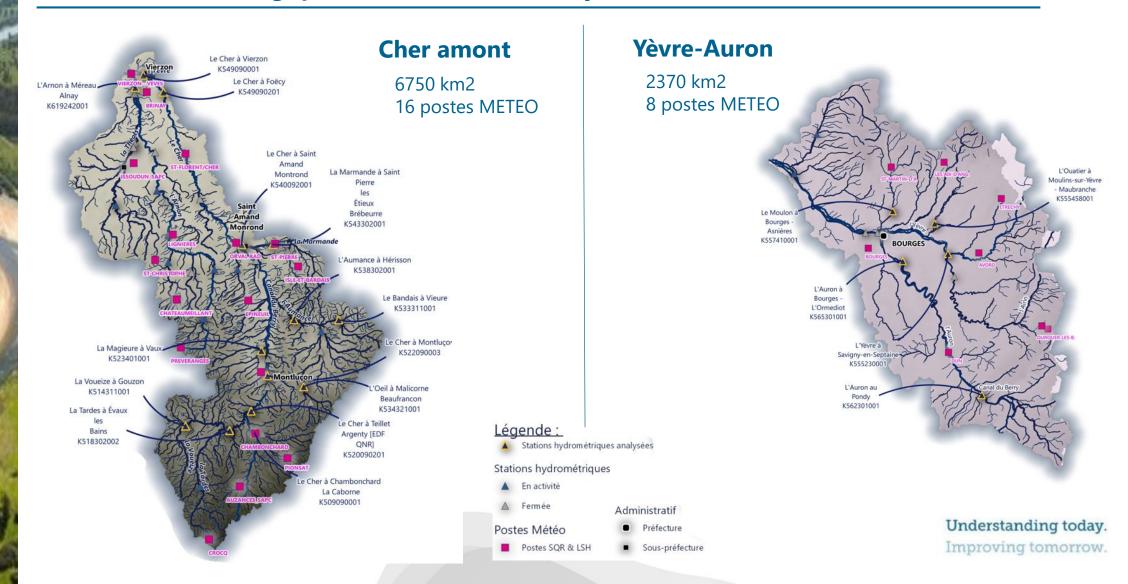
Paramètres étudiés

Précipitations

Données mobilisées

Données modélisées + données mesurées sur des postes météo et corrigées

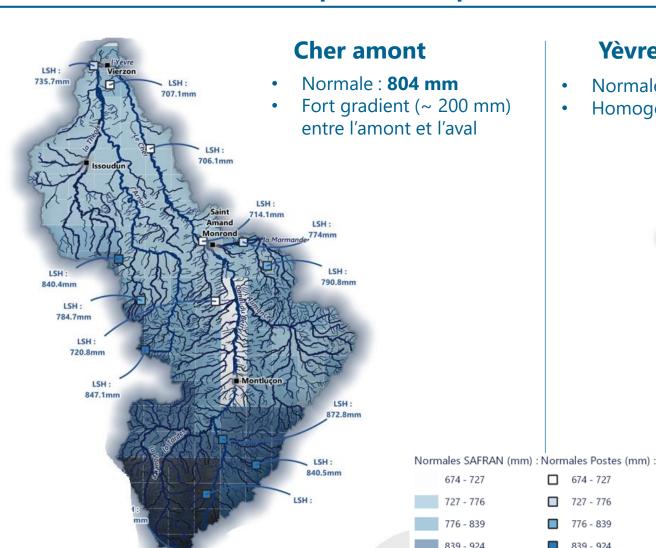
Analyses réalisées et indicateurs obtenus


Variabilité climatique sur le bassin *Ex : normales climatiques* **Tendances d'évolution**

Ex : évolution des normales climatiques

Understanding today. Improving tomorrow.

anteagroup

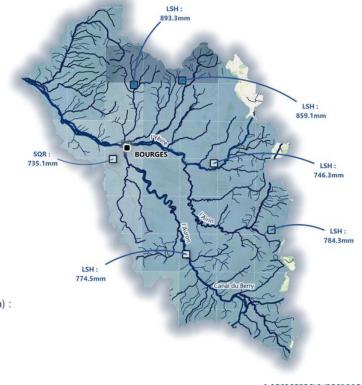

☐ Postes météorologiques mobilisés dans l'analyse

☐ Caractérisation du climat passé : Précipitations [1990 – 2022]

Normale climatique

Valeur moyenne calculée sur une période de 30 ans

Yèvre-Auron

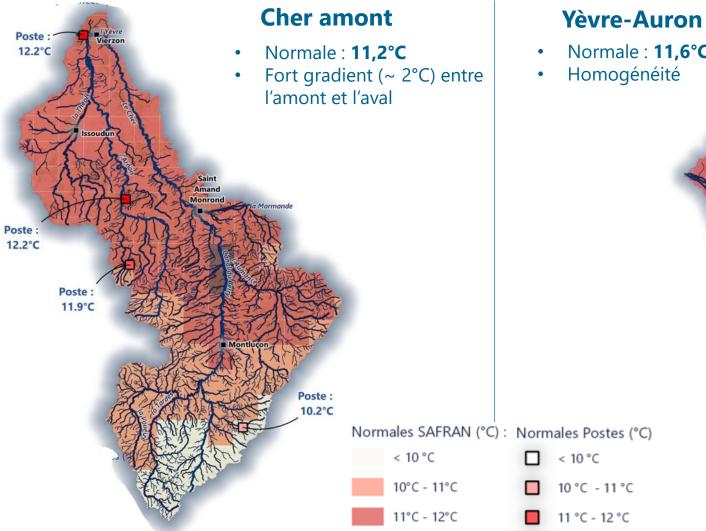

Normale: 788 mm

727 - 776

924 - 1019

924 - 1039

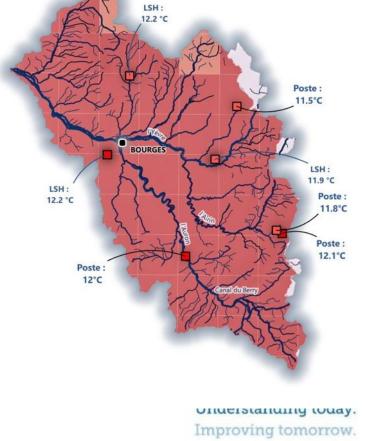
Homogénéité / Plus élevés sur l'amont (Moulon, Colin)


Understanding today.

Improving tomorrow.

☐ Caractérisation du climat passé : Températures [1990 – 2022]

Normale climatique


Valeur moyenne calculée sur une période de 30 ans

> 12 °C

Normale: 11,6°C

> 12°C

☐ Evolution passée du climat

- En statistique, une tendance peut-être significative ou non significative.
- Par convention, on applique un seuil de significativité de 5 %. Cela signifie qu'il existe **5 % de chance que les résultats soient dus au hasard** (et 95 % de chance qu'ils ne le soient pas),
- Une tendance non significative avec un seuil de significativité à 5 % peut être significative avec un seuil à 10 %.

Classification des résultats (paramètres climatiques, hydrologiques et niveaux piézométriques)

Tendances relatives (%/.dec)

Tendance à la baisse significative

Tendance à la baisse non significative

Tendance à la hausse significative

Tendance à la hausse non significative

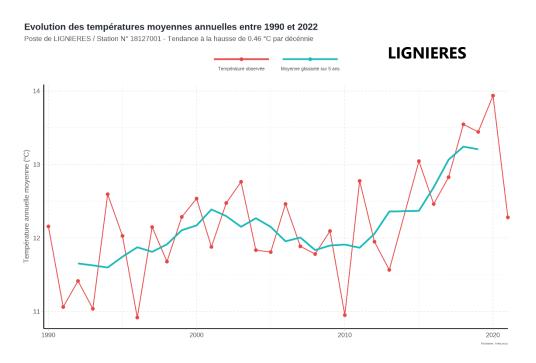
Pas de tendances

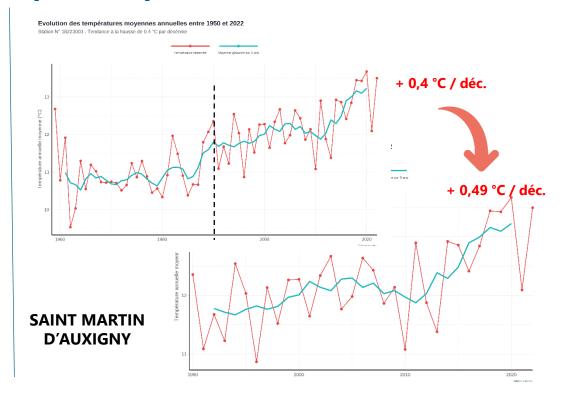
(LIGNIERE)

Cher amont

[1990 – 2022] : Augmentation significative de la température

: + 0,42 °C / déc. (CHATEAUMEILLANT) et + 0,46 °C/ déc.




Température moyenne

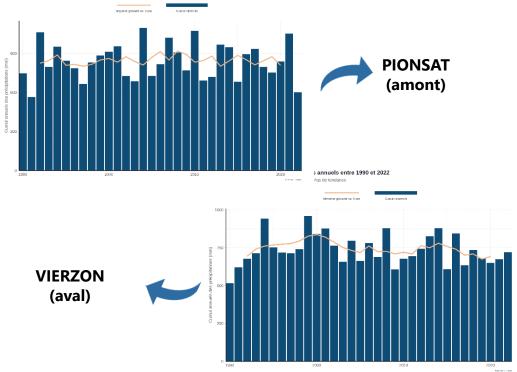
[1990 – 2022]: Augmentation significative de la température
 : + 0,3 °C / déc. (DUN/AURON) et + 0,6 °C/ déc. (OUROUER-LES-BORDELINS)

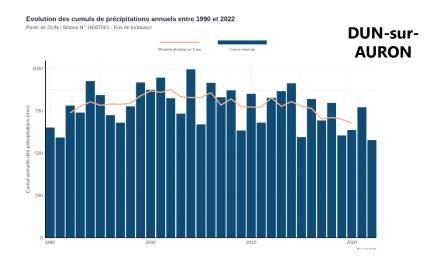
Yèvre-Auron

Accélération du réchauffement par rapport à la période [1950 – 2022].

annuels Evolution des cumuls de précipitations annuels entre 1990 et 2022

Analyse rétrospective du climat




Cher amont

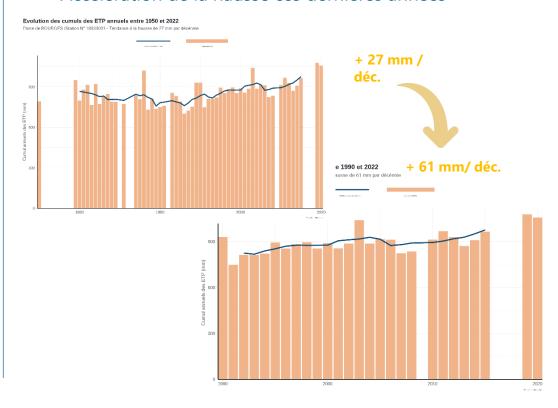
Yèvre-Auron **Précipitations**

[1990 – 2022]: Pas de tendances d'évolution des cumuls

[1990 – 2022]: Pas de tendances d'évolution des cumuls annuels

Understanding today. Improving tomorrow.

Cher amont



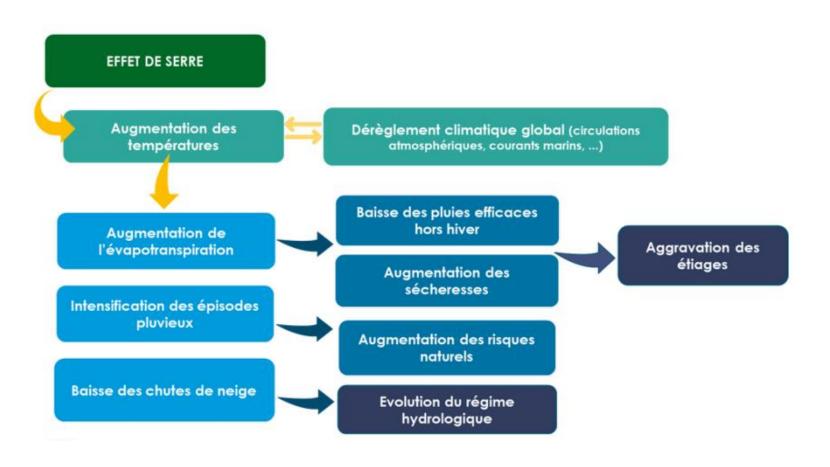
Evapotranspiration

- [1990 2022] : Evolution de l'ETP liée à l'évolution des températures
- Pas de postes avec des chroniques d'ETP sur le territoire

Yèvre-Auron

- [1990 2022] : Augmentation des cumuls sur le poste de BOURGES (+ 61 mm / déc.)
- Accélération de la hausse ces dernières années

Analyse retrospective


Analyse <u>rétrospective</u> de l'évolution du climat et impact sur la ressource en eau

- Évolution passée du climat
- Évolution passée des débits
- Évolution passée des niveaux de nappe

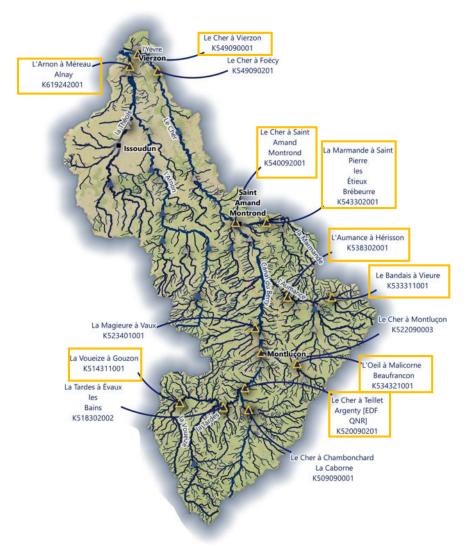
☐ Le lien entre climat et hydrologie

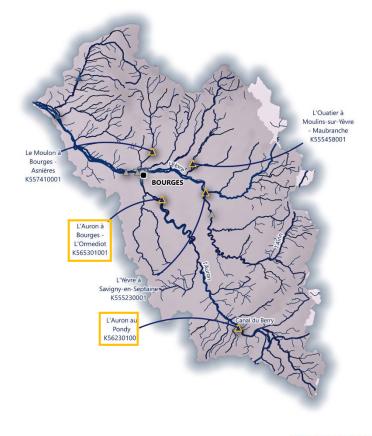
☐ Méthodologie en bref

- Débit mesuré en continu par des stations hydrométriques
- Choix des stations :
 - Données avec peu de lacunes, sur +25 ans
 - 25 stations retenues sur le bassin du Cher dont :
 - 9 sur Cher amont
 - 2 sur Yèvre Auron
- Choix des périodes d'étude passées :
 - « Historique » : 1965 2010 (45 ans)
 - « Récente » : 1990 2022 (32 ans)
- Indicateurs:
 - **Module (QA)** : Débit moyen interannuel
 - **QMNA**: Débit minimum mensuel sur l'année ~ « Débit d'étiage »
 - VCN3: Débit minimum sur 3 jours consécutifs,
 sur l'année ~ « Débit du pic d'étiage »

Station hydrométrique

Understanding today. Improving tomorrow.





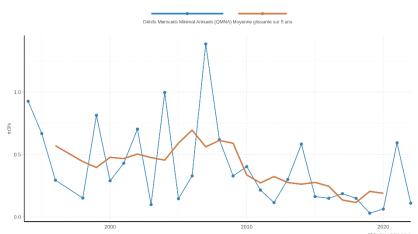
☐ Méthodologie : stations hydrométriques retenues (Analyse des tendances)

Cher amont

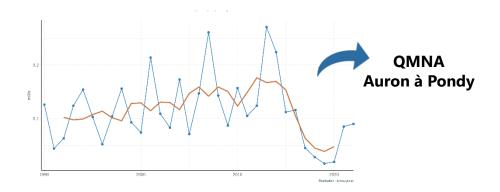
Yèvre-Auron

Understanding today. Improving tomorrow.

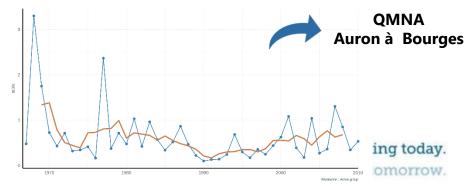
Yèvre-Auron


Cher amont

Régimes hydrologiques

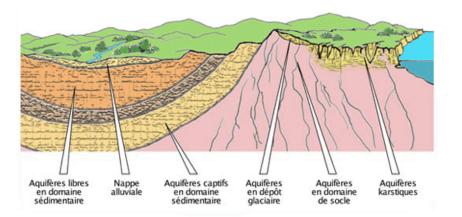

- Baisse généralisée des régimes hydrologiques sur les 9 stations analysées
- Notamment sur les débits d'étiage (QMNA, VCN3) sur les stations localisées à l'amont du bassin (secteurs de socle):
- **Voueize** à Gouzon (QMNA : -43 % / VCN3 : 24 %)
- L'**Aumance** à Herisson (QMNA : -38% /VCN3 : 30 %)
- Le **Bandais** à Vieure : (QMNA : -12 % / VCN3 : -53 %)
- L'**Arnon** à Méreau (QMNA : -22 % / VCN3 : -21 %)

Evolution des Débits Mensuels Minimals Annuels (QMNA) sur la période 1994-20. L'Aumance à Hérisson


[K538302001] - Tendance à la baisse moyenne de 0.15 m3/s par décén

- Signal qui montre une hausse des indicateurs hydrologiques sur les 2 stations analysées
- Lié à l'épisode de sécheresse très marqué en début de de période d'analyse (1990)

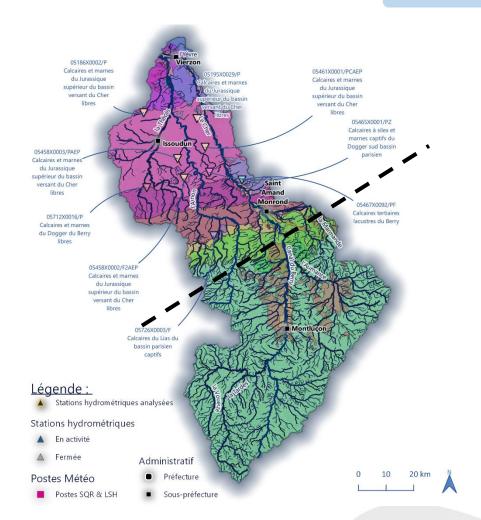
L'analyse des tendances sur la période [1965 – 2022] montre un signal à la baisse de **-10** % par décénnie.

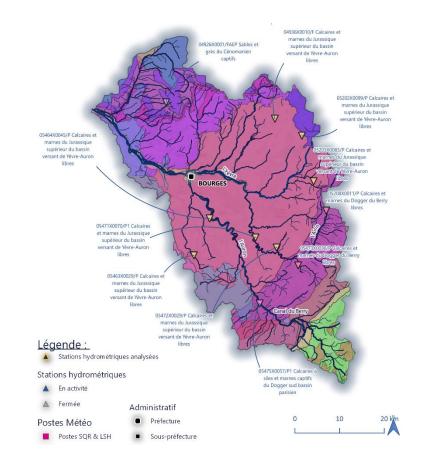


Évolution passée des niveaux piézométriques

☐ Méthodologie en bref

- Chroniques piézométriques associées à une sélection de piézomètre
- Choix des piézomètres :
 - Données avec peu de lacunes, sur +25 ans
 - 37 piézomètres retenus sur le bassin du Cher dont :
 - 9 sur Cher amont (5 MESO)
 - 11 sur Yèvre Auron (4 MESO)
- Une période d'analyse retenue : [1995 2022]
- Indicateurs et tendances calculés sur les niveaux moyens annuels:
 - Niveaux minimums
 - Niveaux médians
 - Niveaux moyens
 - Niveaux maximumIs


Évolution passée des niveaux piézométriques


Cher amont

Yèvre-Auron

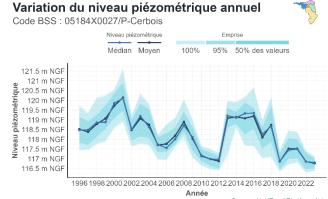
Localisation des piézomètres

Understanding today. Improving tomorrow.

Évolution passée des niveaux piézométriques

Yèvre-Auron

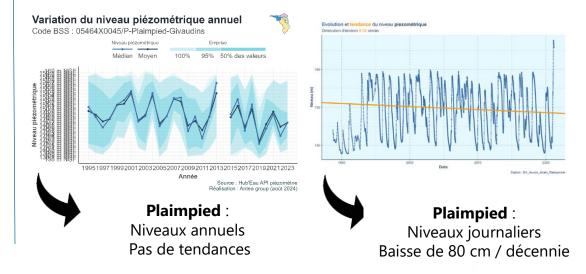
Régimes piézométriques


Des évolutions contrastées selon les aquifères

	Evolutions relatives (% par rapport à la moyenne sur la période)			
Masse d'eau souterraine	Niveau minimum	Niveau médian	Niveau moyen	Niveau maximum
Calcaires à silex et marnes captifs du Dogger sud bassin parisien	0	0	0	0
Calcaires du Lias du bassin parisien captifs	23,0	0	0,0	0,0
Calcaires et marnes du Dogger du Berry libres	▼ -2	0	0	0
Calcaires et marnes du Jurassique supérieur du bassin versant du Cher libres	▼ -4,4	▼ -4,7	▼ -4,7	₹ -3,8
Calcaires tertiaires lacustres du Berry	▼ -2,6	▼ -1,1	▼ -1,5	0

• Des **tendances significatives à la baisse** principalement constatées dans :

-Calcaires et marnes du Jurassique Supérieur (- 4,4 % en moyenne et jusqu'à - 13,5 % localement);


- Calcaires tertiaires lacustres (-1,7 %) dans une moindre mesure dans

Source : Hub'Eau API piézométrie Réalisation : Antea group (août 2024) Des évolutions peu marquées des **niveaux annuels** sur la période

p = = s		(% par rap		olutions rel à la moyer			de)	
Masse d'eau souterraine	Niv	eau minimum	Niv	eau médian	Niv	reau moyen		Niveau aximum
Calcaires à silex et marnes captifs du Dogger sud bassin parisien		1	~	-1,0	_	1	~	-0,5
Calcaires et marnes du Dogger du Berry libres	~	-0,6	~	-1,0	~	-0,9	~	-0,5
Calcaires et marnes du Jurassique supérieur	~	-0,4		0		0	~	-0,7
Sables et grès du Cénomanien captifs	_	12		0		0	~	-1,8

 Des analyses complémentaires (analyse des tendances journalières) à réaliser sur des piézomètres de référence dans le cadre du volet ressources

Analyse <u>prospective</u> de l'évolution du climat et impact sur la ressource en eau

- Méthodologie
- Résultats :
 - Prospective sur l'évolution du climat
 - Prospective sur l'évolution des débits

Méthodologie

■ Méthodologie

 Pas de « création » de donnée = mobilisation et traitement des données existantes les plus récentes au niveau national = EXPLORE 2

- EXPLORE 2:
 - Projet porté par INRAE / Office international de l'eau (OlEau)
 - Objectif : rendre compte du changement climatique et de son impact sur la ressource en eau à partir des dernières projections climatiques disponibles
- Périodes : La période historique Horizon moyen terme Horizon long terme 1975 2005 2040 2070 2070 2100 (
- Prise en compte de l'incertitude :
 - Plusieurs scénarios d'émission de gaz à effet de serre
 - Plusieurs modèles climatiques (narratifs) et hydrologiques
- Dans le cadre de l'étude : choix entre plusieurs modèles différents et contrastés pour envisager les différents futurs possibles du territoire.

Méthodologie

☐ Méthodologie

Choix des modèles climatiques (narratifs)

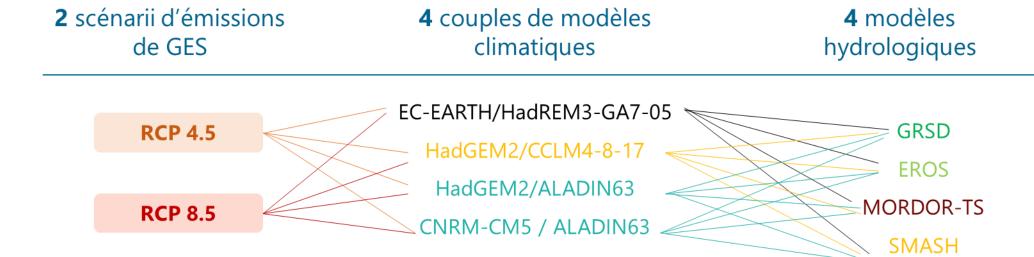
- Choix de modèles avec des résultats contrastés
- → 4 modèles climatiques retenus sur les 17 existants :

Description	Nom complet du modèle
Le + réchauffant des 17 Le + sec des 17	EC-EARTH/HadREM3-GA7-05
Parmi les + réchauffants Parmi les + humides	HadGEM2/CCLM4-8-17
Parmi les + réchauffants Le + humide des 17	HadGEM2/ALADIN63
Parmis les - réchauffants Parmi les + humides	CNRM-CM5/ALADIN63

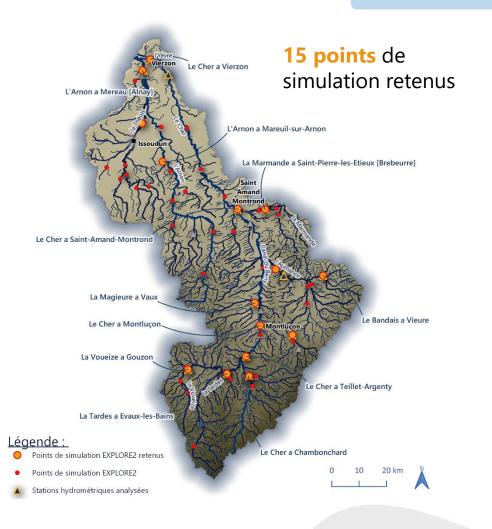
Choix des modèles hydrologiques

- Choix des modèles présentant les meilleures performances pour reconstituer les régimes hydrologiques du territoire
- → 4 modèles hydrologiques retenus sur les 9 existants :

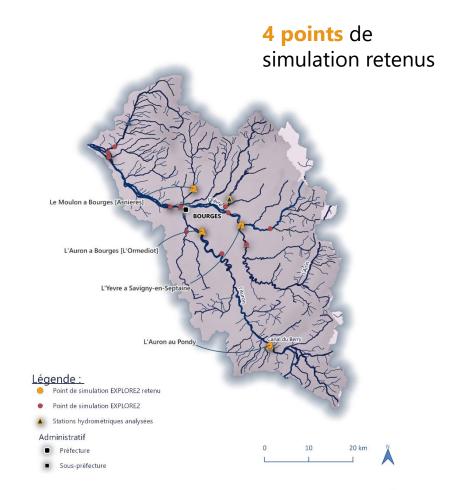
Nom complet du modèle		
GRSD (INRAE)		
MORDOR TS (EDF)		
SMASH (INRAE)		
EROS (BRGM)		


Understanding today. Improving tomorrow.

☐ Méthodologie



Points de simulation hydrologie de surface EXPLORE2

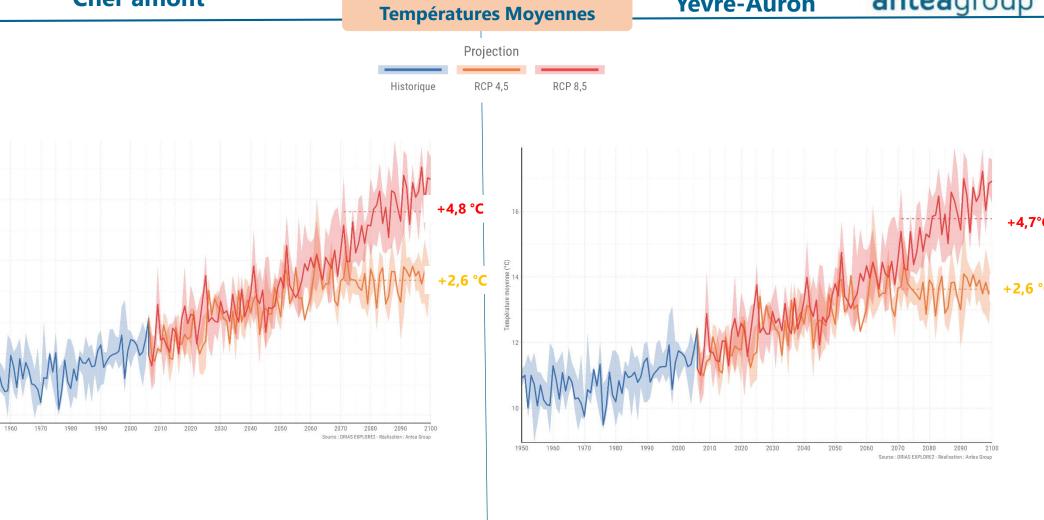


Point de simulation

Cher amont

Understanding today. Improving tomorrow.

Analyse <u>prospective</u> de l'évolution du climat et impact sur la ressource en eau


- Méthodologie
- Résultats :
 - Prospective sur l'évolution du climat
 - Prospective sur l'évolution des débits

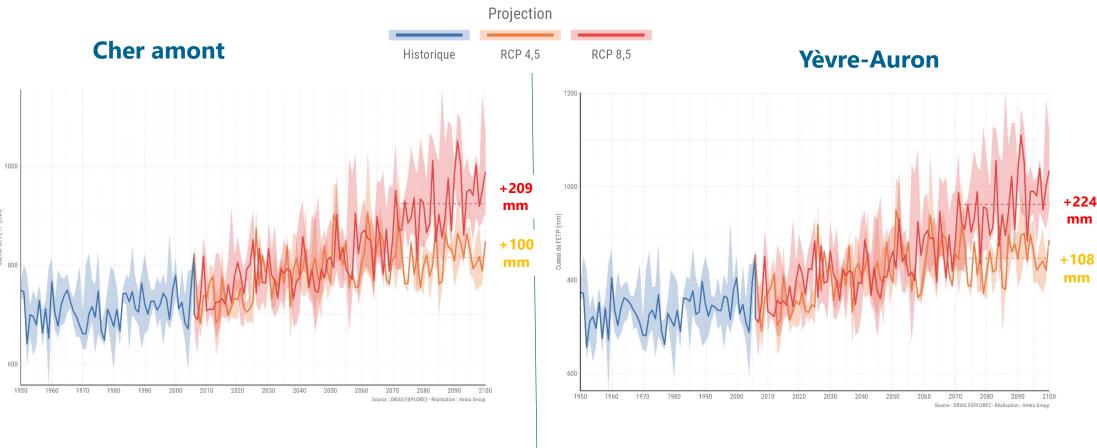
Scénario émissions + faibles RCP 4.5 Scénario émissions + fortes RCP 8.5

Prospective évolution du climat

Cher amont

Understanding today.

Improving tomorrow.


Prospective évolution du climat anteagroup **Précipitations Cher amont Scénario** émissions +36 mm + faibles +9 mm RCP 4.5 **Scénario** Pas de temps mensuel : fortes évolutions émissions Pas de temps annuel : pas de signal marqué plus ou moins marquées selon les narratifs + fortes RCP 8.5 Yèvre-Auron +47 mm +30 mm improving tomorrow.

Scénario émissions + faibles RCP 4.5 **Scénario** émissions + fortes RCP 8.5

Prospective évolution du climat

Un signal à la hausse de l'ETP en lien avec l'augmentation des températures et des besoins en eau des couverts végétaux.

Understanding today. Improving tomorrow.

Analyse <u>prospective</u> de l'évolution du climat et impact sur la ressource en eau

- Méthodologie
- Résultats :
 - Prospective sur l'évolution du climat
 - Prospective sur l'évolution des débits

Modules (QA)

Cher amont

Nom station	Horizon 2040 - 2070	Horizon 2070 - 2100
LE CHER A CHAMBONCHARD	+4,8 %	-8,7 %
LA VOUEIZE A GOUZON	+1,7 %	-12,5 %
LA TARDES A EVAUX-LES-BAINS	+0,5 %	-14 %
LE CHER A TEILLET-ARGENTY	+2,6 %	-11,4 %
LE CHER A MONTLUÇON	+2,3 %	-12,3 %
LA MAGIEURE A VAUX	+7,8 %	-5,7 %
LE BANDAIS A VIEURE	+14,3 %	+1,7 %
L'OEIL A MALICORNE [BEAUGRANCON]	+9,6 %	-8,1 %
L'AUMANCE A HERISSON [PONT DE LA ROCHE]	+13,4 %	+0,9 %
LE CHER A SAINT-AMAND-MONTROND	+6,3 %	-6,9 %
LA MARMANDE A SAINT-PIERRE-LES-ETIEUX [BREBEURRE]	+12,8 %	+5,2 %
LE CHER A VIERZON	+6 %	-7,4 %
L'ARNON A MAREUIL-SUR-ARNON	+7,6 %	-3,2 %
LA THEOLS A SAINTE-LIZAIGNE [PONT RD 34]	+7 %	+1,4 %
L'ARNON A MEREAU [ALNAY]	+5,2 %	-3,4 %

Yèvre-Auron

Nom station	Horizon 2040 - 2070	Horizon 2070 - 2100
L'YEVRE A SAVIGNY-EN-SEPTAINE	+11,9 %	+6,2 %
LE MOULON A BOURGES [ASNIERES]	+11,7 %	+8,3 %
L'AURON AU PONDY	+15 %	+6,4 %
L'AURON A BOURGES [L'ORMEDIOT]	+12 %	+5,7 %

Les débits moyens interannuels (module) vont augmenter d'ici l'horizon moyen terme (2040 – 2070). Un changement de signal s'opère sur le Cher amont, d'ici la fin de siècle avec une baisse des modules quasi-généralisée sur le Cher amont.

Ce signal est d'explique par de fortes variations saisonnières contrastées.

Scénario émissions + faibles RCP 4.5

émissions + fortes RCP 8.5

Scénario

Débits Moyens Mensuels (QMM)

Cher amont

Saison	Mois	Horizon 2040 - 2070	Horizon 2070 - 2100
2.4.4	Décembre	+0%	-18,4%
森	Janvier	+12,7%	+15,3%
不不	Février	+27,5%	+32,8%
	Mars	+33,6%	+41,7%
	Avril	+17,8%	+4,1%
	Mai	+17,8%	-9,7%
11/1/	Juin	-3,9%	-27,9%
- 6-	Juillet	-19,7%	-32,8%
200	Août	-38,8%	-62%
4.10	Septembre	-36,3%	-67,4%
A DE	Octobre	-27,2%	-44,5%
*	Novembre	-9,4%	-25,9%

Yèvre-Auron

Saison	Mois	Horizon 2040 - 2070	Horizon 2070 - 2100
	Décembre	+11,9%	-9,4%
涨	Janvier	+15%	+27,1%
7.4.	Février	+33,8%	+49,9%
	Mars	+41,6%	+52,2%
	Avril	+22,9%	+16%
	Mai	+24,8%	-3,6%
Silve	Juin	-7,1%	-24,4%
	Juillet	-17%	-25,5%
N.L.	Août	-40,3%	-57,3%
*	Septembre	-24,6%	-65,1%
	Octobre	-24,4%	-43%
	Novembre	-12,3%	-33,2%

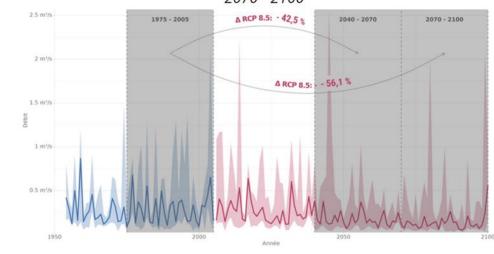
- Augmentation des débits des mois d'hiver et de printemps liée à l'augmentation des précipitations
- Diminutions très fortes des débits d'été et d'automne liées à la baisse des précipitations et à l'augmentation de l'évapotranspiration

ng today.

Scénario émissions + faibles RCP 4.5

Scénario émissions + fortes RCP 8.5

Débits Mensuels d'Etiage (QMNA)


Yèvre-Auron

	Horiz	zons
Nom station	2040 - 2070	2070 - 2100
L'YEVRE A SAVIGNY-EN-SEPTAINE	-42,5 %	-56,1 %
LE MOULON A BOURGES [ASNIERES]	-40,4 %	-55,6 %
L'AURON AU PONDY	-39,2 %	-55,7 %
L'AURON A BOURGES [L'ORMEDIOT]	-34,4 %	-45,7 %

Cher amont

	Hori	zons
Nom station	2040 - 2070	2070 - 2100
LE CHER A CHAMBONCHARD	-50,2 %	-64,3 %
LA VOUEIZE A GOUZON	-54,1 %	-62,1 %
LA TARDES A EVAUX-LES-BAINS	-53,1 %	-65,2 %
LE CHER A TEILLET-ARGENTY	-53,1 %	-65,4 %
LE CHER A MONTLUÇON	-51,1 %	-63,8 %
LA MAGIEURE A VAUX	-49,7 %	-68,5 %
LE BANDAIS A VIEURE	-42,8 %	-62,3 %
L'OEIL A MALICORNE [BEAUFRANCON]	-46,9 %	-64,8 %
L'AUMANCE A HERISSON [PONT DE LA ROCHE]	-45,9 %	-64,7 %
LE CHER A SAINT-AMAND-MONTROND	-49 %	-63,2 %
LA MARMANDE A SAINT-PIERRE-LES-ETIEUX [BREBEURRE]	-37,3 %	-52,6 %
LE CHER A VIERZON	-46,3 %	-61,6 %
L'ARNON A MAREUIL-SUR-ARNON	-45,3 %	-61,3 %
LA THEOLS A SAINTE-LIZAIGNE [PONT RD 34]	-29,9 %	-43 %
L'ARNON A MEREAU [ALNAY]	-32,7 %	-48,9 %

Evolution des QMNA sur l'Yèvre à **Savigny en Septaine** à l'horizon 2070 - 2100

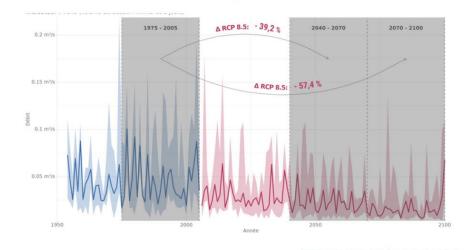
Diminution généralisée et très marquée des débits minimums mensuels :

- Cher amont : secteurs amont plus impactés (Horizon médian)
- Yèvre Auron : Auron à Bourges moins impacté à l'horizon fin de siècle

Understanding today. Improving tomorrow.

Débits Pic d'Etiage (VCN3)

Cher amont


	Hori	zons
Nom station	2040 - 2070	2070 - 2100
LE CHER A CHAMBONCHARD	-44,4 %	-60,4 %
LA VOUEIZE A GOUZON	-47 %	-61 %
LA TARDES A EVAUX-LES-BAINS	-46,1 %	-60,8 %
LE CHER A TEILLET-ARGENTY	-45,6 %	-61,1 %
LE CHER A MONTLUÇON	-42,7 %	-59,6 %
LA MAGIEURE A VAUX	-40,9 %	-60,4 %
LE BANDAIS A VIEURE	-42,6 %	-60,4 %
L'OEIL A MALICORNE [BEAUFRANCON]	-42,2 %	-61,7 %
L'AUMANCE A HERISSON [PONT DE LA ROCHE]	-41,3 %	-60,3 %
LE CHER A SAINT-AMAND-MONTROND	-43,1 %	-60,4 %
LA MARMANDE A SAINT-PIERRE-LES-ETIEUX [BREBEURRE]	-35,5 %	-50 %
LE CHER A VIERZON	-41,3 %	-58,3 %
L'ARNON A MAREUIL-SUR-ARNON	-39,6 %	-60,3 %
LA THEOLS A SAINTE-LIZAIGNE [PONT RD 34]	-26,8 %	-41 %
L'ARNON A MEREAU [ALNAY]	-28,9 %	-44,9 %

Dynamique d'évolution des débits de pic d'étiage similaire à celle des QMNA.

Yèvre-Auron

	Horizons		
Nom station	2040 - 2070	2070 - 2100	
L'YEVRE A SAVIGNY-EN-SEPTAINE	-45,8 %	-61 %	
LE MOULON A BOURGES [ASNIERES]	-38,7 %	-54,7 %	
L'AURON AU PONDY	-39,2 %	-57,4 %	
L'AURON A BOURGES [L'ORMEDIOT]	-31,7 %	-43,5 %	

Evolution des VCN3 moyens sur le **l'Auron à Pondy** à l'horizon 2070 - 2100

Understanding today. Improving tomorrow.

Scénario émissions + faibles RCP 4.5

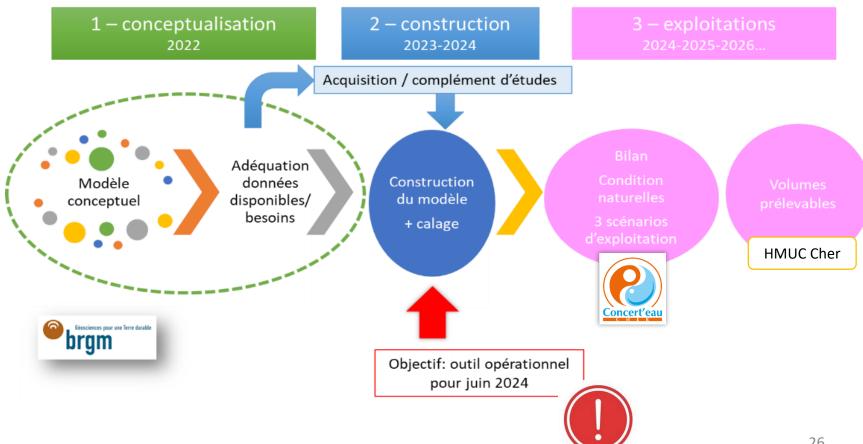
Scénario émissions + fortes RCP 8.5

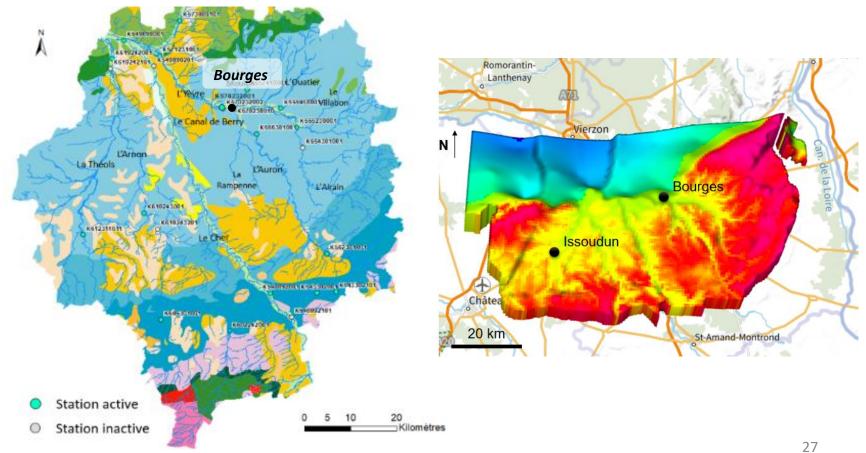
Merci pour votre attention

Des questions sur le contenu de cette présentation ?

Tristan Bourgeois

tristan.bourgeois@anteagroup.fr





• La démarche globale – synoptique initial

• La démarche globale

CAYAC 2 – construction du modèle

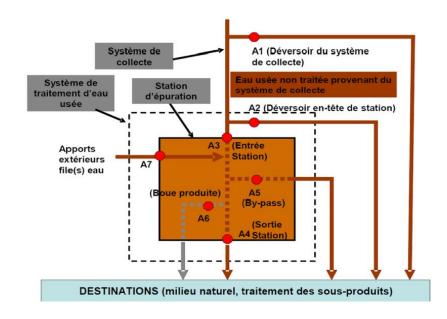
	Tâche / détail	Etat d'avancement	
	Géométrie de l'aquifère et étude de la recharge : - modèle géologique, analyse des linéaments (fracturations)	- présenté le 23/01 inter-CLE	
1	- modélisation globale pluie-débit pour calibrer les bassin-versant « entrants » dans le territoire	Cher, Théols et Arnon :Auron, Airain à faire et à financer	×
	lien nappe-rivièreextension	présenté le 23/01 inter-CLEprésenté le 23/01 inter-CLE	✓

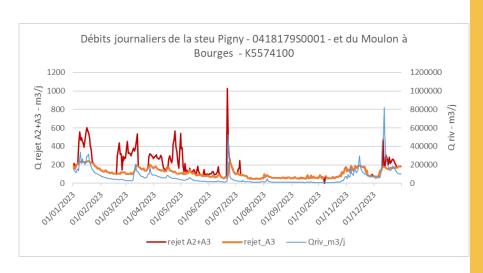
La quasi-totalité des cours d'eau prennent leur(s) source(s) en dehors de la zone d'affleurement du Jurassique supérieur et donc en dehors de la zone modélisée. Il est nécessaire d'estimer les flux en amont des cours d'eau pour prendre en compte les effets du changement climatique sur le débit des cours d'eau entrant dans le modèle hydrogéologique.

5 modèles globaux ont déjà été réalisés : deux au droit du Cher, deux au droit de l'Arnon et un pour la Théols pour simuler les débits en amont de ces trois cours d'eau.

Au regard des enjeux il semble important de modéliser les bassins amont de l'Auron et l'Airain (11 500€ HT – 3 mois de travail).

CAYAC 2 – construction du modèle

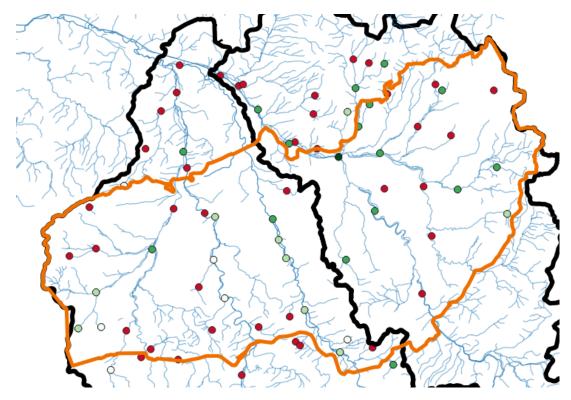

	Tâche / détail	Etat d'avancement	
2	Construction du modèle : - représentation des alluvions, maillage du réseau hydrographique - mensualisation des prélèvements / rejets tous usages	 présenté le 23/01 inter-CLE AEP, assainissement collectif, irrigation/ abreuvement, Canal de Berry 	×
3 a	calage du modèle en régime permanent (une année donnée)	Attente étape 2	
3b	calage du modèle en régime transitoire (sur une chronique la plus longue possible)	Attente étape 2	



CAYAC 2 – construction du modèle

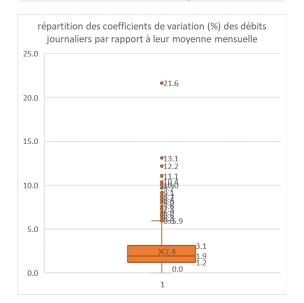
Zoom sur la mensualisation des rejets de steu

Les rejets de STEU peuvent influencer les hydrogrammes des cours d'eau. Lors de la construction du modèle, l'objectif est de parvenir à désinfluencer les hydrogrammes pour reconstituer les débits « naturels » des cours d'eau au pas d temps mensuel.



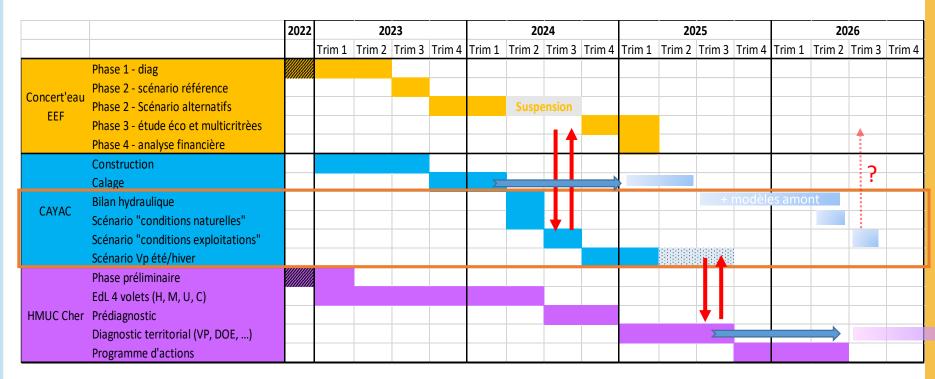
Zoom sur la mensualisation des rejets de steu

COTEC dédié dans les semaines à venir


74 STEU étudiées 32 avec des données journalières

Nombre d'année de données

- 0 1 4 [6]
- 0 4 7 [9]
- 7 10 [16]
- 10 17 [1]


STEU sans donnees journalieres

(42)

Lien avec les autres démarches

- Recalage temporel et technique avec les autres démarches à travailler ?
- Financements de(s) l'exploitation(s) du modèle à trouver

• SDAGE 2028-2033: rôle des SAGE

Thème	Rôle des CLE	Evènements / outils	Période	
Les enjeux	Délibération : avis	Forums / Commissions territoriales Webinaire spécifique + transmission d'un support Formulaire en ligne / cadre type	Novembre 2024 à Mars 2025	CLE
Pg de mesures	Remarques sur la stratégie	En parallèle de la consultation	Novembre 2024 à Mars 2025	CLE
Etat des lieux	Concertation	Webinaire	Décembre 2024	animateurs
Sdage	Echange sur la subsidiarité	Réunion d'échange	Mai 2025	Président + avis CLE
				+ avis CLE en 2026

- SDAGE 2028-2033: les 7 enjeux
- 27 novembre à Vierzon forum de l'eau sur les enjeux du prochain SDAGE et PGRi Loire-Bretagne
- 1. La politique de l'eau à la hauteur des enjeux d'atténuation et d'adaptation au dérèglement climatique
- La connaissance et la communication au service de la prise de conscience pour éclairer les choix, accompagner les transitions et affronter les ruptures
- Les politiques territoriales, porteuses des nécessaires solidarités entre les acteurs et les territoires autour de la gestion de l'eau
- 4. La préservation et la restauration des fonctionnalités des sols, des milieux aquatiques, des zones humides et du cycle naturel de l'eau
- 5. La sobriété des usages, au cœur d'une gestion quantitative équilibrée, partagée et durable de l'eau
- 6. Une eau de qualité, pour la santé humaine et la préservation de la biodiversité
- 7. La préservation des estuaires et de la mer en conciliant les activités terrestres et marines

Mine de Lithium dans l'Allier

- Usine de conversion dans l'Allier (Saint-Victor)
- Consommation potentielle nette de 600 000m3/an
- Tension sur la ressource en eau du Cher en période d'étiage (avec débit garanti descendu à 800l/s)
- Débat public sur la période de mars à juillet 2024
- Rapport de restitution publié le 30 septembre 2024

Projet de mine de lithium dans l'Allier | CNDP (debatpublic.fr)

Webinaires CLE en main

1 heure pour découvrir/approfondir des sujets abordés en CLE

- <u>28 novembre 11h30</u>: SAGE et documents d'urbanismes (date sous réserve)
- <u>5 décembre 11h00</u>: problématique des polluants émergents dans l'alimentation en eau potable (date sous réserve)

Refonte des sites internet

www.sage-yevre-auron.fr

Cher samont

www.sage-cher-amont.fr

